
RIVYERA API
Machine-API (VHDL)

Version 1.91.01 B2

SciEngines GmbH

Fraunhoferstrasse 13

24118 Kiel

Germany

www.sciengines.com

Revision: 921 1.91.01 B2 February 22, 2013

The Information in this document is provided for use with SciEngines GmbH

('SciEngines') products. No license, express or implied, to any intellectual

property associated with this document or such products is granted by this

document.

This document and other materials distributed with SciEngines products

and marked as con�dential ("Con�dential Information") shall be treated

with care to prevent unauthorized disclosure, but in no event less than

reasonable care.

All products described in this document whose name is prefaced by 'COPA-

COBANA', 'RIVYERA', 'SciEngines' or 'SciEngines enhanced' ('SciEngines

products') are owned by SciEngines GmbH (or those companies that have

licensed technology to SciEngines) and are protected by patents, trade se-

crets, copyrights or other industrial property rights. The SciEngines products

described in this document may still be in development. The �nal form of

each product and release date thereof is at the sole and absolute discretion

of SciEngines. Your purchase, license and/or use of SciEngines products

shall be subject to SciEngines's then current sales terms and conditions.

Trademarks

The following are trademarks of SciEngines GmbH in the United States and

other countries:

� SciEngines GmbH,

� SciEngines Massively Parallel Computing,

� SciEngines Logo,

� COPACOBANA, COPACOBANA RIVYERA, RIVYERA, IPANEMA

Trademarks of other companies

� Intel is a registered trademark of Intel Corporation.

� Linux is a registered trademark of Linus Torvalds.

� Windows is a registered trademark of Microsoft Corporation.

� Oracle, Oracle Enterprise Linux are a registered trademark of the Or-

acle Corporation.

� RedHat, RedHat Enterprise Linux are a registered trademark of the

RedHat Corporation.

� Xilinx, Virtex and ISE are registered trademarks of Xilinx in the United

States and other countries.

� ChipScope, CORE Generator and PlanAhead are trademarks of Xilinx,

Inc.

Thank you for choosing an original SciEngines
product.

Imprint

Responsible for content:

Firm SciEngines GmbH

Street Fraunhoferstr. 13

ZIP D-24118

City Kiel

Country Germany

Phone +49 431 5302 482

Email info@sciengines.com

WWW http://www.sciengines.com

CEO Gerd Pfei�er

Commercial Register Amtsgericht Kiel

Commercial Register No. HR B 9565 KI

VAT- Identification Number DE 814955925

Disclaimer: Any information contained in this document is

con�dential, and only intended for reception and use by the

speci�ed person who bought the SciEngines product. Draw-

ings, pictures, illustration and estimations are non binding

and for illustration purposes only. If you are not the in-

tended recipient, please return the document to the sender

and delete any copies afterwards. In this case any copying,

forwarding, printing, disclosure and use is strictly prohibited.

Table of Contents

1 Basic Information 7

1.1 General ideas of parallel programming 7

1.2 Concept of using SciEngines RIVYERA 8

1.3 API version information . 10

1.4 RIVYERA API Addressing Scheme 12

1.4.1 Physical Address Components 12

1.4.2 Address Wildcards 12

1.4.3 Virtual Address Components 12

1.4.4 Target Adresses . 13

1.4.5 Source Adresses . 13

2 RIVYERA API Structure 14

2.1 RIVYERA API Register Paradigm 14

2.2 RIVYERA API Routing Strategies 15

2.2.1 Smart Routing . 15

3 VHDL API Introduction 16

3.1 Introduction . 16

3.2 API instantiation and HDL design �ow 17

3.3 Functional Description . 18

3.3.1 General Ports . 18

3.3.2 Input register . 20

3.3.3 Output Register . 22

3.4 General Notes . 22

3.4.1 Responding to Read Requests 22

3.4.2 Initiating Read Requests 23

3.4.3 Host Data Transfers 24

3.4.4 Autonomous Writes 24

3.5 Example Code . 25

3.5.1 Reading an Input Register 26

3.5.2 Sending Data . 27

4 Class Documentation 28

4.1 sciengines_api_components Package Reference 28

4.2 sciengines_api_types Package Reference 28

1 Basic Information 7

1 Basic Information

The main purpose of the RIVYERA API is to interface single and multiple

FPGAs in a massively parallel architecture as simple and easy as possible.

We intended to provide an infrastructure for your FPGA designs which is

powerful enough to transport the bene�ts of a massively parallel architecture

without raising the complexity of your design.

Therefore, we provide a simple interface which makes the idiosyncratic

implementation of the physical layers disappear and provide a high-level

view into our machines in which details do not get in the way of your work.

This introduction o�ers a brief overview of the SciEngines RIVYERA ma-

chine. It describes the physical and structural machine features from the

programmers' point of view.

1.1 General ideas of parallel programming

Traditionally, software has been written for serial computation. There are

two naive reasons for serial computation concepts: one is that thinking in

a serial, causal way is easy for most humans, the other is that computers

started mechanically. Still during the early 1980s, the most common input

way for data or programs had been the punched tape or tape recorder. Most

of today's computers are von-Neumann-architectures. Named after the

Hungarian mathematician John von Neumann who �rst stated the general

requirements for an electronic computer in his 1945 papers. Since then,

virtually all computers have followed this basic design, which di�ered from

earlier computers programmed through 'hard wiring '. Standard CPUs are

designed to provide a good instruction mixture for almost all commonly

used algorithms. Therefore, for a class of target algorithms they cannot

be as e�ective as possible in terms of design freedom. Most software is

intended to be run on such general purpose computers having one single

central processing unit (CPU). A problem is splitted into a discrete series of

instructions using these computers. Each instruction is executed one after

the other and only a single instruction may be executed at any moment in

time.

All SciEngines machines, especially RIVYERA, follow a totally parallel ar-

chitectural concept. It provides a large number of �eld programmable gate

arrays (FPGAs), which are able to implement a huge number of individual

processing elements. In the most simple sense, FPGA parallel computing

is the simultaneous use of multiple computational resources like processing

elements to solve large computational problems. The RIVYERA API allows

a simple and assisted way of generating hundreds of processing elements

per FPGA. To solve a complex task, it is split into discrete parts that can

be solved concurrently. Each part is computed in its own processing ele-

ment. Unlike a classical CPU, the discrete parts are further split to a series

of instructions which are executed in highly problem optimized dedicated

hardware. This hardware task is coded in the hardware description lan-

guage VHDL. The instructions from each part are executed simultaneously

©SciEngines GmbH * CONFIDENTIAL DOCUMENT *

1.2 Concept of using SciEngines RIVYERA 8

on di�erent processing elements and FPGAs.

General computational problems usually demonstrate characteristics such

as the ability to be split into discrete pieces of work that can be solved

simultaneously and execute multiple program instructions at any moment in

time. Therefore, problems are solved in less time with SciEngines RIVYERA

than with a single computational resource like a CPU.

1.2 Concept of using SciEngines RIVYERA

To e�ciently use SciEngines RIVYERA, the computational problem or al-

gorithm is split in two general parts (see �gure 1). One part is the strict

software or frontend part which remains on the integrated host PC inside

the RIVYERA machine. The other part is the core algorithm which is ac-

celerated by using the FPGAs on a single RIVYERA machine or even on

multiple RIVYERA machines. The FPGAs programmable by the user are

further referenced to as UserFPGAs.

FPGA

FPGA

FPGA

computational
problem

010101010
101010101
010101000

.

.

.

111101010
101011101
010101111

.

.

.

FPGA configurationSoftware executable

Host PC

FPGA

Figure 1: Partitioning of a problem into host- and machine-parts

In general, the software part could be seen as a frontend for the user or as a

data interface to provide the resources for the FPGA accelerated parts. Also,

simple pre- or postcomputations are ideal for this part. The RIVYERA Host-

API o�ers rich interface functions which are easily adaptable into existing

code.

©SciEngines GmbH * CONFIDENTIAL DOCUMENT *

1.2 Concept of using SciEngines RIVYERA 9

CAUTION

In a massively parallel architecture the �ow control should

always be a point to think about. To achieve the best

speedup, the �ow control should be done within the

Machine-API, e.g. by designing a special FPGA entity.

Compared to FPGA architectures, PC architectures react

much slower, because incoming events always have to be an-

alyzed by schedulers, memory managers and other OS com-

ponents. Therefore, the programmer always adds an arti�-

cial delay when allowing the FPGAs to wait for a PC reac-

tion. Flow control in your PC software using the Host-API is

still fast and quick to implement but might not result in the

speedup your design is capable of.

The second part implements the acceleration, �ow control and multiple

processing elements to solve the computational problem. The RIVYERA

Machine-API o�ers useful adequate functions which easily allow you to im-

plement the key parts of the algorithm. To free your mind, it allows you an

implementation without taking care of low level communication and multi-

plication of your processing elements.

To create the host part and the machine part of your application, di�erent

software tools are useful. On the host side, high level languages such as C

or C++ and even Java are addressed by the RIVYERA Host-API. In order

to design e�cient processing elements, VHDL or Verilog is recommended.

Implementations using cross-language compilers like SystemC are possible,

but will most likely not result in the expected speedups.

In order to move any suitable computational problem to the RIVYERA ma-

chine, the computational problem should be partitioned into the two men-

tioned parts (see �gure 2). For the integrated frontend on the host PC,

the usage of any suitable compiler and development environment will cre-

ate adequate results. As an IDE, we would like to suggest Eclipse. We

would also like to recommend the usage of the Gnu C Compiler (gcc) or

any comparable Unix based compiler in order to create executable code on

the integrated RIVYERA Host PC1. Machines shipped with Unix based op-

erating systems, like Linux, usually provide a preinstalled gcc or equivalent

compiler. All available RIVYERA machines provide templates for several

programming languages like C/C++ or Java.

On the FPGA, we recommend the usage of the XILINX® ISE® develop-

ment environment. Most third party compilers and IDEs might work as

there are no other templates included except the ones provided for ISE®.

Using the RIVYERA Machine-API allows simple interfacing of your VHDL-

implemented processing elements.

1RIVYERA API has been tested with Linux/gcc. Other compilers may work but are not
officially supported.

©SciEngines GmbH * CONFIDENTIAL DOCUMENT *

1.3 API version information 10

FPGA

computational
problem

010101010
101010101
010101000

.

.

.

111101010
101011101
010101111

.

.

.

Host PC

FPGA

C Code

VHDL
Library

IEEE
Library

VHDL
Code

SciEngines APISciEngines
Host-API

SciEngines
Machine-API

Host C
compiler
e.g. gcc

VHDL
Compiler

VHDL
Syntheses

ISE

SciEngines
Host-API

SciEngines
Machine-API

SciEngines
Machine-API

problem partitioning

Figure 2: Design flow for multicomponent software systems

1.3 API version information

The SciEngines API follows a simple versioning scheme. All API versions

are denoted aa.bb.cc s with the symbols as follows.

� aa: Major API version

Major API version changes indicate that the complete code structure

will have to be changed if migrating. A changing Major version often

indicate complete restructurings of the APIs code and therefore have

a very long interval.

� bb: Minor API version

A change in the API minor version will be performed if new features

will be suppported.

� cc: API Service Pack (sometimes abbreviated with SP)

The API Service Pack will increase if there have been bug �xes.

� s: API revision string

The revision string can be an arbitrary string to explain the version.

For example, "RC1" as a revision string may indicate that this is the

�rst release candidate of a new API version.

©SciEngines GmbH * CONFIDENTIAL DOCUMENT *

1.3 API version information 11

Within this scheme, there is one speci�c characteristic. All versions with b

≥ 90 are pre-release versions of a higher major version. For example, API

1.90.00 is the �rst alpha version of API 2.00.00.

©SciEngines GmbH * CONFIDENTIAL DOCUMENT *

1.4 RIVYERA API Addressing Scheme 12

1.4 RIVYERA API Addressing Scheme

The addressing scheme in the RIVYERA API is straightforward. Every single

data word travels through the machine containing two addresses. One (the

so called target) of these contains information where it should be sent to, the

other one (so called source) tells the receiver where this word originated.

Each address is built from multiple components which will be explained

below.

1.4.1 Physical Address Components

To gain highest possible �exibility, every FPGA in the whole RIVYERA is

uniquely identi�able and can therefore be addressed individually. The ad-

dressing scheme contains two physical �elds: Slot and FPGA address. These

�elds are derived from the physical machine structure. Every RIVYERA ma-

chine physically consists of one or more FPGA Cards, each of which is

plugged into a backplane slot. All plugged cards are numbered from index

0 to index CARD_COUNT-1, retaining their physical order. The index of

each card is called it's slot index. Multiple FPGAs may reside on each card.

Similar to the cards in one system, the FPGAs are numbered in order, start-

ing at index 0 as well. However, all FPGAs on one card share the same slot

index. Using both the slot and FPGA index, every FPGA may be addressed

uniquely throughout a whole RIVYERA machine.

1.4.2 Address Wildcards

Physical Address Components may be replaced by wildcards, such as

ADDR_SLOT_ALL or ADDR_FPGA_ALL. Using these wildcards, it is pos-

sible to create broadcast- or very simple multicast-addresses. For example

slot=ADDR_SLOT_ALL, fpga=0 refers to the �rst FPGA on all cards,

whereas slot=0, fpga=ADDR_FPGA_ALL selects all FPGAs on slot 0.

slot=ADDR_SLOT_ALL, fpga=ADDR_FPGA_ALL of course selects ev-

ery FPGA on every slot.

1.4.3 Virtual Address Components

The addressing scheme is completed by two more �elds: command and reg-

ister. Both �elds do not have any physical means but are only useful for

communication. The command �eld may be one of read or write. Whereas

write commands do not imply a dedicated behaviour on the FPGA side, read

commands assume a proper answer. Please see section 2.5.1 (Responding

to Read Requests) in the VHDL-Documentation for more information. The

register address �eld MAY be used to create multiple data streams. It can

be considered as a stream identi�er. As either sent and received words always

contain information about their source and target register the user is given a

very powerful possibility to create and design his very own data�ows. A very

common way to use the register �eld is to use di�erent types of streams

for each register. For example, consider an FPGA design which has two

©SciEngines GmbH * CONFIDENTIAL DOCUMENT *

1.4 RIVYERA API Addressing Scheme 13

calculation cores which have to be fed with independent data. In this exam-

ple, it would make sense to use register 0 for core 1 and register 1 for core

2. Please note that using multiple registers does not a�ect communication

bandwith.

1.4.4 Target Adresses

A target address speci�es where a given data word is to be delivered to and

how the target shall interprete the incoming word. For example, incoming

words with api_i_tgt_cmd_out = CMD_WR tells the target FPGA that

the sender does not expect an answer. Whenever api_i_tgt_cmd_out

= CMD_RD your user logic is expected to send a number of words speci�ed

in api_i_data_out back to the sender.

Please note that as a receiver, you will not see the target slot and FPGA

�elds of an incoming word, because these are given implicitly by data receipt.

1.4.5 Source Adresses

Source addresses contain information about the source of an incoming data

word. While a source's slot and FPGA information is straightforward, the

command and register �elds are more complex to understand. In general,

both source command and source register do not have to be taken into

account. Whenever the user FPGA receives data from the host interface,

the source command will be CMD_WR and the source register will be set to

0x0. However, you are free to implement designs that e�ectively use these

�elds within inter-FPGA-communication, for example to tell the receiver to

send responds to a de�ned target address.

©SciEngines GmbH * CONFIDENTIAL DOCUMENT *

2 RIVYERA API Structure 14

2 RIVYERA API Structure

The RIVYERA is designed as a linear systolic array of FPGAs. This means

that every FPGA is only connected to its predecessor and its successor.

Hence, all data uses the same transport channel and in order to maintain

the correctness of order, data frames are not allowed to overtake each other.

These speci�c features have to be kept in mind when designing your code

for RIVYERA.

2.1 RIVYERA API Register Paradigm

User Code

User Control UnitMachine-API

Input Register

Output Register

General Ports
R
I
V
Y
E
R
A

B
U
S

Figure 3: VHDL-API taking care of user design’s I/O

Figure 3 shows the block diagram of one example of an FPGA design.

The host interface provided by the Machine-API is instantiated once and

connects to an addressed FPGA.

This design paradigm will be modelled by the Machine-API and, accordingly,

by the Host-API.

� Input Register

The SciEngines RIVYERA API enables the user to send and receive

streamed data to and from an FPGA. Using this mechanism it is

possible to send data from host to one or multiple FPGAs as well

as transfer data between FPGAs and send data from FPGA to the

host. A streams consists of individual 64 bit data words which are

transferred in order. This means: Words written earlier to an FPGA

arrive earlier than words which are written later.

� Output Register

The SciEngines RIVYERA API provides a single register which can

be used to send data. Whenever the user wants to send data to

either the host PC or any other (possibly multiple) FPGA(s), he may

provide data to this output register.

Both Input- and Output Register are realized as BlockRAM FIFOs.

©SciEngines GmbH * CONFIDENTIAL DOCUMENT *

2.2 RIVYERA API Routing Strategies 15

2.2 RIVYERA API Routing Strategies

SciEngines API will support multiple routing-schemes, so the RIVYERA can

be adapted according to each user's needs. Currently, the only supported

routing scheme is Smart Routing.

2.2.1 Smart Routing

The Smart Routing strategy, which is enabled by default, will determine the

shortest route through the RIVYERA for every sent word. It will make full

usage of the machine's architecture with its Card-to-Card shortcuts.

Broadcasted transfers will automatically be spreaded in both communication

directions to reduce the worst-case latency. The following illustrations sketch

one FPGA Card with 8 FPGAs. The sender of a word is always coloured in

bright green, whereas the links that are used to pass a word are highlighted

red. Please note that exactly the same routing method applies to FPGA

Cards with di�erent numbers of FPGAs.

Figure 4 depicts the route of a word written to all FPGAs by the Host-

Application. The host-connected Service FPGA duplicates the word and

sends it to its User FPGAs using both ring directions. All FPGAs but three

and four do both: forwarding the incoming word to their successors and

forwarding it to the internal user User Logic. The FPGAs three and four

forward the word to their User Logic, but do not forward it to the next

FPGA. Therefore, no FPGA gets the word twice.

Backplane Interconnect

Host Interface

FPGA
5

FPGA
4

FPGA
3

FPGA
2

FPGA
6

FPGA
7

FPGA
0

FPGA
1

Svc
FPGA

Figure 4: Routing of a host-initiated write

The same principle of routing applies for FPGA↔ FPGA Transfers as shown

in Figure 5. If an FPGA issues a broadcast, then it is broadcasted to both

directions and it is assurred by the API that no FPGA gets the same word

twice.

©SciEngines GmbH * CONFIDENTIAL DOCUMENT *

3 VHDL API Introduction 16

Backplane Interconnect

Host Interface

FPGA
5

FPGA
4

FPGA
3

FPGA
2

FPGA
6

FPGA
7

FPGA
0

FPGA
1

Svc
FPGA

Figure 5: Routing of an fpga-initiated write

3 VHDL API Introduction

The following sections will give a more detailed overview regarding the HDL-

API-Component.

3.1 Introduction

The SciEngines RIVYERA API provides easy access to the communication

features that the RIVYERA is capable of. The handling of the I/O reg-

isters is similar to the handling of Xilinx® FIFO components. However,

there are some slight di�erences in usage and behaviour of SciEngines API

components.

Features

The SciEngines RIVYERA API is a precompiled netlist (softmacro) and

provides the following features:

� Complete handling of all physical I/O-Layers and routing procedures

� Bidirectional (Full-Duplex) communication throughout the whole

RIVYERA machine

� Fully asynchronous input and output register

� Support of reading and writing from and to every FPGA on the entire

machine

� Up to 400 MB/s useable communication bandwidth per interconnect2

The VHDL-part of the SciEngines RIVYERA API comes within a single, pre-

compiled entity which has to be instantiated by designs running on RIVYERA

machines.

2Depending on available device

©SciEngines GmbH * CONFIDENTIAL DOCUMENT *

3.2 API instantiation and HDL design flow 17

3.2 API instantiation and HDL design flow

All the functionality of the SciEngines RIVYERA API is shipped within one

single block. You can consider it as a black box, that handles all the FPGAs

I/O Pins and provides the interface described in this document to your user

code's side. This black box is called a "Macro". Thinking in terms of VHDL

it is nothing else than an entity that is capable of all the things necessary

to operate the RIVYERA. Figure 6 shows the general HDL-Design-Flow.

Synthesis

Translation

UCF File

Map

Macro

Place & Route

SourcecodeSourcecodeSourcecodeSourcecode

Netlist
(Softmacro)

Bitfile

Input Process Output

Figure 6: General HDL Design Flow

On its way to a programmable bit�le, every sourcecode has to pass the

following steps:

� Synthesis

Within synthesis, the sourcecode is synthesized and transformed into

an RTL Netlist. The resulting netlist is often referred to as a Soft-

macro.

� Translation

The general netlist is translated into a Vendor speci�c netlist.

©SciEngines GmbH * CONFIDENTIAL DOCUMENT *

3.3 Functional Description 18

API Version User ID
<1.90.00 0xXXXXXXXX
<2.90.00 0x10000000

Table 1: Overview of version related Bitfile User IDs

� Map

In Map phase, the netlist is mapped to the available logic on the target

chip.

� Place & Route

In Place & Route (PAR), the gates are placed and routes are deter-

mined. Placed & Routed Macros (Hardmacros) are of course excluded

from PAR and are only taken in as given blocks.

Because the HDL-API-Module comes as a softmacro, it is �rst opened in the

translation step. The SciEngines API module ships in a .edf format and will

be translated to .ngo format in the translation step. Please note that if your

API Module changes on the �le system, Xilinx tools DO NOT update the

translated netlist (.ngo) by themselves. The only way to force Xilinx tools

to update the translated netlist is to remove the SciEngines_API.ngo

�le in the project directory manually.

After your design passes all the design steps, a programming �le (referred

to as bit�le) is generated. SciEngines API supports either binary bit�les

(.bit) or ASCII bit�les (.rbt). In order to not accidentally con�gure the

FPGAs with a wrong bit�le, SciEngines API checks the User ID contained

in the bit�le which is depending on the active API version. Table 1 shows

an overview of valid User IDs (X denotes a Don't Care). This UserID check

has been introduced in the �rst alpha of the SciEngines API 2 (Version

1.90.00), so if you are using API 1 (below version 1.90.00) you can ignore

the UserID setting. Projects generated with the SciEngines ProjectCompass

will automatically set the correct User ID. If you want to create a project

manually, you can set the User ID with the bitgen -g UserID: switch

or graphically in the Confguration Options of the Generate Programming

File properties.

3.3 Functional Description

The SciEngines RIVYERA API module handles the RIVYERA Bus tra�c

and provides communication features to the user's FPGA design.

The SciEngines RIVYERA API provides a 64-bit input register. The register

will bu�er all incoming data. This data will only be discarded if the user's

FPGA design acknowledges its receipt. Whenever it is desired to send data,

the 64-bit output register may be used.

3.3.1 General Ports

Despite the ports used for communication, RIVYERA API contains addi-

tional ports for clocking, reset and additional information. Table 2 shows

©SciEngines GmbH * CONFIDENTIAL DOCUMENT *

3.3 Functional Description 19

Bit(s) Name Direction Reset Value Description
0 api_clk_out Output 0 Clock. The API’s clock output.
0 api_rst_out Output 1 Reset. Reset output needed to reset the

user’s design.
1-0 api_led_in Input 00 LED. Input to enable/disable the User-

FPGA’s LEDs. Tied to 0 if not set.
0 api_self_contr_out Output 0 Controller Flag. Indicating wether there

is a host interface connected to this slot or
not.

9-0 api_next_contr_out Output 0x0 Next Controller Adress. The slot address
where the next host interface is located at.

9-0 api_prev_contr_out Output 0x0 Previous Controller Adress. The slot ad-
dress where the previous host interface is
located at.

9-0 api_self_slot_out Output 0x0 Slot Address. The FPGA’s slot address.
4-0 api_self_fpga_out Output 0x0 FPGA Address. The FPGA’s FPGA ad-

dress.

Table 2: General ports of the API-Component

all general ports of the API-Component including a short description. All

of these general RIVERA API ports are running at 100 MHz (Spartan 3

devices: 50 MHz). Therefore, api_clk_out, provides a 100 MHz clock

(Spartan 3 devices: 50 MHz). RIVYERA API uses two (Spartan 3 devices:

one) of the FPGA's DCMs, so you are free to use all the others to create

di�erent clock domains. The clock output of the SciEngines API may be

directly connected to another DCM (please select No Bu�er as clock input

Source when creating the DCM).

Note that after powerup, SciEngines RIVYERA API will need some

time to initiate itself, so api_rst_out will be high initially. When-

ever api_rst_out is low, your design may safely run. As long as

api_rst_out is asserted, it is not safe to use any information contained

in the general ports, because they may change during initialization.

api_self_slot and api_self_fpga contain information about the

FPGA's address.

The ports api_*_contr_out contain information about all controllers

next to the FPGA's slot. If the slot of the FPGA has an interface to the

host-PC, api_self_contr_out is asserted. api_next_contr_out

provides the next controller'slot index, which is the �rst card with

a higher slot index and a host-interface. If there is no next con-

troller, then api_next_contr_out points to the previous controller if

api_self_contr_out is not asserted or to its own slot index, otherwise.

According to the next controller information, api_prev_contr_out pro-

vides the �rst card with a lower slot index and a host-interface. If there is no

such card, it points to the next controller if api_self_contr_out is not

asserted or to its own slot index, otherwise. If api_self_contr_out

is asserted (meaning that the FPGA's card has a host-interface)

and there is no other controller, both api_prev_contr_out and

api_next_contr_out point to its own slot index.

api_led_in can be used to drive the LEDs connected to the FPGA.

©SciEngines GmbH * CONFIDENTIAL DOCUMENT *

3.3 Functional Description 20

CAUTION

api_rst_out should not be used as a global reset for all

instantiated logic. If you want to reset your logic according

to api_rst_out, you have two options to consider:

� Add timing ignore attribute to api_rst_out

Adding a timing ignore attribute (TIG) to

api_rst_out, you have to consider that your

design might not start synchronously, meaning that

some components may sense user_rst_out low

earlier than other. This is simply because the design

tools do analyze api_rst_out anymore regarding

its timing aspects, so the signal may have di�erent

runtime from its source to each component.

� Build a FlipFlop tree to distribute the signal to all

your logic avoiding a huge fan-out. Building a

FlipFlop tree is the more di�cult way to handle a

global reset, but the safer way, as well. With build-

ing a FlipFlop chain, you add an arti�cial delay to

the signal, allowing it to reach every component at

the same time. This, of course, makes your code

start later than api_rst_out might indicate, but

api_rst_out=0 only means that your design may

start to run, but not that it has to.

3.3.2 Input register

The input register is used for incoming data transfer. Its behaviour is similar

to that of First-Word-Fall-Through FIFOs. For all incoming data words, the

user's design has to acknowledge its receipt, so the API can make sure that

the user's design does not miss any data.

The presence of data in the Input register will be signalled by unasserted

api_i_empty_out. As long as api_i_empty_out is not asserted, all

output ports will provide valid data. api_i_empty_out will stay asserted

as long as the Input register does not contain more than one word.

Once api_i_empty_out is low and the next incoming word is desired,

api_i_rd_en should be asserted for one clock cycle. This leads to dis-

card of the currently present word and presents the next word from the

FIFO, if any. Please note that the input register has a delay of two clock

cycles. If api_i_rd_en_in is asserted, the register content WILL NOT

CHANGE in the very NEXT CLOCK CYCLE. Simple Implementations - as

the given example code below - will therefore only sample the register's con-

tent if api_i_rd_en_in = ’0’ AND api_i_empty_in = ’0’ to

make sure that the register is given time to update its content. For a per-

formance optimization, please consider the use of api_i_am_empty_in.

Figure 7 illustrates the receipt of a read request from the controller interface

©SciEngines GmbH * CONFIDENTIAL DOCUMENT *

3.3 Functional Description 21

Bit(s) Name Direction Reset Value Description
0 api_i_clk_in Input - Clock. All input register ports will by syn-

chronous to this clock. It MUST be con-
nected.

9-0 api_i_src_slot_out Output 0x0 Source Slot Address. The slot address of
the communication source

4-0 api_i_src_fpga_out Output 0x0 Source FPGA Address. The FPGA ad-
dress of the communication source

5-0 api_i_src_reg_out Output 0x0 Source Register Address. The register
address of the communication source

0 api_i_src_cmd_out Output 0 Source Command. The source’s com-
mand.

5-0 api_i_tgt_reg_out Output 0x0 Target Register Address. The register
address this word was targetted at commu-
nication source.

0 api_i_tgt_cmd_out Output 0 Target Command. The command to be
performed.

63-0 api_i_data_out Output 0x0 Data. The data to be read.
0 api_i_empty_out Output 0 Empty. This flag is indicating that there is

no input available.
0 api_i_am_empty_out Output 0 Almost Empty. This flag is indicating that

there is only one more word of input avail-
able.

0 api_i_rd_en_in Input 0 Acknowledge. This control signal ac-
knowledges that the user core is aware of
the new data and indicates that the data
register can be freed.

Table 3: Input Register ports of the API-Component

at slot zero, followed by a write to register 2 by fpga 4 on slot 2.

The �rst word (api_i_data_out = D1) arrives at the Input register,

indicated by api_i_empty_out = ’0’. Because there is only one word

inside the register, api_i_am_empty_out stay asserted. This changes

in the very next clock cycle, because the second word arrives at the regis-

ter. It now contains two words and therefore api_i_am_empty_out gets

easserted.

Two clock cycles after api_i_rd_en_in is triggered, the �rst word is

discarded and the second word is provided at the interface. According to

its de�nition, api_i_am_empty_out transits to high again, because the

presented word is the only word present in the Input register at this time.

After the second word gets read, too, api_i_empty_out gets asserted,

indicating the there is no valid data present.

Figure 7: Input Register Timings

©SciEngines GmbH * CONFIDENTIAL DOCUMENT *

3.4 General Notes 22

Bit(s) Name Direction Reset Value Description
0 api_o_clk_in Input - Clock. All output register ports will by syn-

chronous to this clock. It MUST be con-
nected.

9-0 api_o_tgt_slot_in Input 0x0 Target Slot Address. The slot address of
the communication target.

4-0 api_o_tgt_fpga_in Input 0x0 Target FPGA Address. The FPGA ad-
dress of the communication target.

5-0 api_o_tgt_reg_in Input 0x0 Target Register Address. The register
address of the communication target.

0 api_o_tgt_cmd_in Input 0 Source Command. The command to be
performed at the target.

5-0 api_o_src_reg_in Input 0x0 Source Register Address. The register
address of the communication source.

0 api_o_src_cmd_in Input 0 Target Command. The command that an
appropriate answer should be directed to.

63-0 api_o_data_in Input 0x0 Data. The data to be sent.
0 api_o_wr_en_in Input 0 Write. Initiates the send process.
0 api_o_rfd_out Output 0 Ready for data. Flag for indicating if the

API core is ready for data.

Table 4: Output Register ports of the API-Component

3.3.3 Output Register

If it is desired to send data to any other FPGA or to the host, the output

register has to be used. Whenever api_o_rfd_out is high, you may put

data to this register. Additionally, it is allowed to write data in the very next

clock cycle, when api_o_rfd_out changes from high to low, because it

is designed as an inverted almost full �ag.

The usage of the output register is straightforward. After providing the

data, command, target address and source register, everything is sent by

setting api_o_wr_en_out to ’1’ for one clock cycle. Be sure to set

api_o_tgt_cmd to the desired command.

Figure 8 illustrates the process of sending data to slot 1, FPGA 3, register

2 from register 5 with respect to the api_o_rfd_in �ag.

Once api_o_rfd_out gets asserted, it is allowed to strobe the

api_o_wr_en_out signal to send the data presented to the interface.

In the example, the words D1, D2, D3 and D4 are sent within the �rst

assertion period of api_o_rfd_in.

3.4 General Notes

The SciEngines API can handle much of the communication complexity, but

not all of it. Hence your code also has to provide an appropriate functionality.

Consider an incoming read request (CMD_RD): As soon as some component

addresses your design, it is up to your code to react and send back an

appropriate response.

3.4.1 Responding to Read Requests

Read requests are a special case in SciEngines RIVYERA API as they need

to be serviced by your design. A read request is sent whenever a component

waits for incoming data.

Every read request (CMD_RD) has to be answered by sending a

write request (CMD_WR) with the read request's source as new

target and the read request's target as source. Therefore you

©SciEngines GmbH * CONFIDENTIAL DOCUMENT *

3.4 General Notes 23

Figure 8: Output Register Timings

need to set api_o_src_reg_in to the input target register

api_i_tgt_reg_out and set api_o_tgt_reg_in to the input source

register api_i_src_reg_out.

It is easy to imagine that you have to claim that you respond as regis-

ter api_o_src_reg_in, so when register 2 should be read and the re-

spond is expected to be written to register 5, then (api_i_new_out

= ’1’, api_i_tgt_reg_out = “000010”, api_i_src_reg_out

= “000101” and api_i_tgt_cmd_out = CMD_RD) are set and you

claim to respond as register 2 and therefore set api_o_src_reg_in <=

“000010”, api_o_tgt_reg_in <= “000101”.

Whenever a read request occurs, api_i_data_out will contain the

number of 64 bit words expected to be sent by your design, so when

api_i_data_out equals 0x3, your design is expected to send three

words.

3.4.2 Initiating Read Requests

When your design initiates a read request, the request's target will re-

act by writing data to the input source register that was speci�ed in

api_o_src_reg_in while sending the read request.

The number of words expected by the target to be returned needs to be

put to api_o_data_in (e.g. when the target has to return three words,

api_o_data_in is set to 0x3).

Note: You can not request to read data from the host.

©SciEngines GmbH * CONFIDENTIAL DOCUMENT *

3.4 General Notes 24

3.4.3 Host Data Transfers

In order to address the host system, simply set api_o_tgt_fpga_in

to ADDR_FPGA_HOST. Additionally, you need to specify the correct target

slot. Note that the card located in the target slot MUST be connected to

a Host Controller. You will �nd the addresses of the surrounding controllers

in api_next_contr_out and api_next_contr_out. In general the

UserFPGAs are reacting to host read requests, which occur at the input

register with api_i_tgt_cmd_out = CMD_RD. If so, you can simply

write back to the request's source slot. If this is not the case, and your

design needs to write data to the host without being asked for it, please

refer section 3.4.4.

3.4.4 Autonomous Writes

There might be some cases in which the FPGAs need to communicate with

the host software without being requested to. For convenience, these FPGA

write actions will be called autonomous writes. Whenever your design needs

to write data to the host without being asked for it, you need to spec-

ify FPGA ADDR_FPGA_HOST as target. Please note that in the current

API Version you will not be able to use a wildcard to address the very

next controller but you have to set the target controller's slot address by

yourself. You may then either specify a speci�c slot with an active PC con-

nection or you may write data targeted for slot ADDR_SLOT_ALL to send

the data to the very next controller. In the case of transfers to the con-

troller, (ADDR_SLOT_ALL) does NOT denote a real broadcast but will

be replaced by the next controller's slot. See the Host-API documentation

for how to handle autonomous FPGA writes.

©SciEngines GmbH * CONFIDENTIAL DOCUMENT *

3.5 Example Code 25

3.5 Example Code

Reading and writing to registers will be straightforward since it does not

di�er from standard components provided by Xilinx®. In order to make

you familiar with the machine and to start right o� programming designs,

a brief introduction to the behaviour of the RIVYERA API components will

be given.

©SciEngines GmbH * CONFIDENTIAL DOCUMENT *

3.5 Example Code 26

3.5.1 Reading an Input Register

The most common case in communication will be to read incoming data

from an input register. As we described brie�y in section 3.3.2, you have to

con�rm the reading of every data package, otherwise the input register will

block any further tra�c.

Listing 1: Example code of how to read an input register

−− Re g i s t e r to s t o r e the s ou r c e s l o t f o r l a t e r computat ion

s i g n a l s r c_ s l o t : seS lo tAddr_type := (o t h e r s => ' 0 ') ;

−− Re g i s t e r to s t o r e the s ou r c e command

s i g n a l src_cmd : seCmd_type := CMD_WR;

−− Re g i s t e r to s t o r e the t a r g e t command

s i g n a l tgt_cmd : seCmd_type := CMD_WR;

−− Re g i s t e r to s t o r e the pay load f o r l a t e r computat ion

s i g n a l data : seData_type := (o t h e r s => ' 0 ') ;

input_proc : p r o c e s s

beg in

wa i t u n t i l ap i_c lk_in = '1 ' and api_clk_in ' even t ;

−− Only p roceed i f new data a v a i l a b l e

i f api_i_empty_out = '0 ' and api_i_rd_en_in = '0 ' then

−− Sto r e data ' s s ou r c e and command word

s r c_ s l o t <= api_i_src_s lot_out ;

src_cmd <= api_i_src_cmd_out ;

tgt_cmd <= api_i_tgt_cmd_out ;

−− Sto r e data i f i t i s meant to be w r i t t e n .

i f api_i_tgt_cmd_out = CMD_WR then

−− Sto r e data f o r c a l c u l a t i o n

data <= api_i_data_out ;

end i f ;

−− Conf i rm the r e c e i p t o f data .

api_i_rd_en_in <= ' 1 ' ;

e l s e

−− I f no data p r e s en t , do not read .

api_i_rd_en_in <= ' 0 ' ;

end i f ;

end p r o c e s s ;

©SciEngines GmbH * CONFIDENTIAL DOCUMENT *

3.5 Example Code 27

3.5.2 Sending Data

In order to send data you have to be aware that data may only be sent if

api_o_rfd_out is asserted. Otherwise any change to the port's signals

will have no e�ect. After setting the target's address (including slot-, fpga-

and register address), the desired command and the payload, the whole

frame is written by setting api_o_wr_en_in to ’1’. The API is ready

for the next data word as soon as api_o_rfd_out is high again.

Listing 2: Example code of how to send data

output_proc : p r o c e s s

beg in

wa i t u n t i l ap i_c lk_in = '1 ' and api_clk_in ' even t ;

−−−−−−−− Set i n f o rma t i o n s −−−−−−−−−
−− Sp e c i f y command (he r e : w r i t e command)

api_o_tgt_cmd_in <= CMD_WR;

−− Set Address to S l o t 3 , FPGA 2 , i n pu t r e g i s t e r 4

api_o_tgt_slot_in <= "0000000010" ;

api_o_tgt_fpga_in <= "00001" ;

api_o_tgt_reg_in <= "000011" ;

−− Send from r e g i s t e r 1

api_o_src_reg_in <= "000001" ;

api_o_src_cmd_in <= CMD_WR;

−− Set pay load

api_o_data_in <= (o t h e r s => ' 0 ') ;

−−−−−−−−−− Try to w r i t e −−−−−−−−−−−
−− Only w r i t e i f API i s r eady .

api_o_wr_en_in <= api_o_rfd_out ;

end p r o c e s s ;

©SciEngines GmbH * CONFIDENTIAL DOCUMENT *

4 Class Documentation 28

4 Class Documentation

4.1 sciengines_api_components Package Reference

This package contains all the di�erent setups of the SciEngines RIVYERA

API. These cores contain all the ports needed to use the SciEngines RIVY-

ERA API. They completely take care of all the internals, so you may easily

instantiate this component and use it as described in the Machine-API doc-

umentation. Instantiate only one component in your Top Level code.

Libraries

Packages

Components

� SciEngines_API

SciEngines API component.

� SciEngines_API_Simulation

SciEngines Simulation API component.

Attributes

4.2 sciengines_api_types Package Reference

This package contains all the types and constants used for the SciEngines

RIVYERA API.

Libraries

Packages

Word length constants

Constants

� LENGTH_ADDR_SLOT positive := 10

The length of a slot address.

� LENGTH_ADDR_FPGA positive := 5

The length of an FPGA address.

� LENGTH_ADDR_REG positive := 6

The length of a register address.

� LENGTH_ADDR positive := 21

©SciEngines GmbH * CONFIDENTIAL DOCUMENT *

4.2 sciengines_api_types Package Reference 29

The overall address length.

� LENGTH_CMD positive := 1

The length of command words.

� LENGTH_DATA positive := 64

The length of the payload.

� LENGTH_HW_REV positive := 8

The length of the hardware revision vector.

Data types for single words

Types

� seBusFlag_type array (natural range<>) of seFlag_type

Data type used for multiple �ags.

Subtypes

� seFlag_type std_logic

Data type used for single �ags.

� seSlotAddr_type std_logic_vector (LENGTH_ADDR_SLOT -

1 downto 0)

Data type for slot addresses.

� seFpgaAddr_type std_logic_vector (LENGTH_ADDR_FPGA

-1 downto 0)

Data type for FPGA addresses.

� seRegAddr_type std_logic_vector (LENGTH_ADDR_REG -1

downto 0)

Data type for register addresses.

� seCmd_type std_logic_vector (LENGTH_CMD -1 downto 0)

Data type for command words.

� seData_type std_logic_vector (LENGTH_DATA -1 downto 0

)

Data type for payload.

� seHwRev_type std_logic_vector (LENGTH_HW_REV -1

downto 0)

Data type for hardware revision information.

©SciEngines GmbH * CONFIDENTIAL DOCUMENT *

4.2 sciengines_api_types Package Reference 30

Addressing wildcards

Constants

� ADDR_SLOT_ALL seSlotAddr_type := (others = > ' 1 ')

Slot wildcard.

� ADDR_FPGA_ALL seFpgaAddr_type := (others = > ' 1 ')

FPGA wildcard.

� ADDR_FPGA_HOST seFpgaAddr_type := (0 = > ' 0 ' , others

= > ' 1 ')

Host FPGA constant.

� ADDR_REG_EOT seRegAddr_type := (others = > ' 1 ')

EOT Register constant.

Command types

Constants

� CMD_RD seCmd_type := " 0 "

Read command.

� CMD_WR seCmd_type := " 1 "

Write command.

FPGA types

Constants

� FPGA_none seFpgaType_type := " 0000 "

No or unknown FPGA.

� FPGA_xc3s1000_4ft256 seFpgaType_type := " 0001 "

Xilinx Spartan 3 1000, Speed Grade -4, Package FT256.

� FPGA_xc3s1500_4fg676 seFpgaType_type := " 0010 "

Xilinx Spartan 3 1500, Speed Grade -4, Package FG676.

� FPGA_xc3s5000_4fg676 seFpgaType_type := " 0011 "

Xilinx Spartan 3 5000, Speed Grade -4, Package FG676.

� FPGA_xc6slx75_3fg484 seFpgaType_type := " 0100 "

Xilinx Spartan 6 LX75, Speed Grade -3, Package FG484.

©SciEngines GmbH * CONFIDENTIAL DOCUMENT *

4.2 sciengines_api_types Package Reference 31

� FPGA_xc6slx150_3fg676 seFpgaType_type := " 0101 "

Xilinx Spartan 6 LX150, Speed Grade -3, Package FG676.

� FPGA_xc4vsx35_10�668 seFpgaType_type := " 0110 "

Xilinx Virtex 4 SX35, Speed Grade -10, Package FF668.

Subtypes

� seFpgaType_type std_logic_vector (3 downto 0)

Datatype used for FPGA types.

©SciEngines GmbH * CONFIDENTIAL DOCUMENT *

	Basic Information
	General ideas of parallel programming
	Concept of using SciEngines RIVYERA
	API version information
	RIVYERA API Addressing Scheme
	Physical Address Components
	Address Wildcards
	Virtual Address Components
	Target Adresses
	Source Adresses

	RIVYERA API Structure
	RIVYERA API Register Paradigm
	RIVYERA API Routing Strategies
	Smart Routing

	VHDL API Introduction
	Introduction
	API instantiation and HDL design flow
	Functional Description
	General Ports
	Input register
	Output Register

	General Notes
	Responding to Read Requests
	Initiating Read Requests
	Host Data Transfers
	Autonomous Writes

	Example Code
	Reading an Input Register
	Sending Data

	Class Documentation
	sciengines_api_components Package Reference
	sciengines_api_types Package Reference

