

Breaking Ciphers with COPACOBANA A Cost-Optimized Parallel Code Breaker or

How to Break DES for 8,980 €

CHES 2006, Yokohama, October 10-13, 2006

Sandeep Kumar, Jan Pelzl, Gerd Pfeiffer, Manfred Schimmler, Christof Paar

http://www.copacobana.org

- Joint project with the University of Kiel (Gerd Pfeiffer, Manfred Schimmler)
- Special thanks to François-Xavier Standaert and Jean-Jacques Quisquater (Universitè Catholique de Louvain) for the core of the DES architecture

Introduction: A Naming Tale

What does COPACOBANA stand for?

Possible abbr. of "Cost-optimized Parallel Code-Breaker":

What's in a name?

Copacobana

COPACOBANA - CHES 2007

- Security vs. Cost
- COPACOBANA Design
- Application 1: Brute Force Attack on DES
- Application 2: ECC Attack
- Conclusion and Outlook

- Security vs. Cost
- COPACOBANA Design
- Application 1: Brute Force Attack on DES
- Application 2: ECC Attack
- Conclusion and Outlook

Symmetric ciphers

- (hopefully) only brute-force attack possible
- "secure" key lengths: 112...256 bit (attack compl. 2¹¹²...2²⁵⁶)
- but in practice wide variety of keys: AES, DES, RC4, A5, MD5, SHA-1, ... (attack compl. 2⁵⁶...2²⁵⁶)

Asymmetric ciphers (RSA, ECC, DL)

- algorithmic attacks (e.g., factorization) dictate larger keys
- key lengths in practice:
 - RSA, DL: 1024 ... 4096 bit
 - ECC: 160 ... 256 bit
- attack complexities: 2⁸⁰ (?) ... 2¹²⁸

Security and Computation

- Traditional: security of ciphers = **complexity** of attacks
- However: What really matters are the **costs** of an attack
- State-of-the-art
 - < 2⁵⁰ steps can be done with PC networks (more or less conveniently)
 - > 2⁸⁰ steps are very hard with today's technology (probably also for intelligence agencies)

Introduction: Massive Computing

Supercomputers (Cray, SG, ...)

- General (= complex & expensive) parallel computing architectures
- fast I/O, large memory, easy to program
- ► poor cost-performance ratio for (most) cryptanalysis

Distributed computing (conventional PCs)

- Dedicated clients in clusters, or
- Using PC's idle time: E.g., SETI@home (BOINC framework)
- Problem of motivation, confidentiality issues

Special-purpose hardware

- ASIC Application Specific Integrated Circuits (high NRE)
- FPGA Field Programmable Gate Arrays (low NRE)
- best cost-performance ratio

9

Cryptanalysis of Modern Ciphers: Basics Horst-Görtz Institut für IT Sicherheit

Security of ciphers is related to complexity of attacks:

- Symmetric ciphers:
 - "Good" ciphers: only exhaustive key search possible
 - an exhaustive key search should be infeasible
 - Secure key lengths: 80...256 bit
 - But many legacy systems with 56...64 bit (DES and such)
 - Asymmetric ciphers (e.g., RSA, ECC)
 - longer keys due to analytical attacks
 - Secure key lengths
 - RSA: 1024...4096
 - ECC: 130-256 bit

Cryptanalysis of Modern Ciphers: Hardware

- Large supercomputers:
 - Complex and expensive parallel computing architectures
 - Fast I/O, large memory, easy to program
 - E.g., Cray-XD1
 - ► Too complex for (most) cryptanalysis (bad cost-performance ratio)
- Distributed computing (conventional PCs):
 - Dedicated clients in clusters, or
 - Using PC's idle time: E.g., SETI@home (BOINC framework)
 - Problem of motivating for cryptanalytic challenges, confidentiality issues
- Special purpose hardware:

HUNDER

- Application Specific Integrated Circuits (ASICs, high NRE)
- Field Programmable Gate Arrays (FPGAs, low NRE)
- Optimized for one particular objective
- ► Tradeoff between reprogrammability and price per piece, best cost-performance ratio

Introduction: Advantage of Hardware

Cost-performance ratio of DES¹): PC vs. FPGA

• DES encryptions / decryptions per second

Pentium4@3GHz: $\approx 2 \times 10^6$ price per device (retail): $\in 80$

Xilinx XC3S1000@100MHz $\approx 400 \times 10^{6}$ price per device (retail): $\in 40$

Cost-performance ratio differs by 2-3 orders of magnitude!

1) Based on actual optimized implementations

COPACOBANA: Design Principles

- Ability to perform $\geq 2^{56}$ crypto operations
- Re-programmable: Applicable to many ciphers
- Strictly optimized cost-performance ratio:
 - -off-the-shelf hardware (low-cost)
 - many logic resources (performance)
- < 9,000 € (including fabrication and material cost)
- Parallel architecture, based on 120 low-cost FPGAs
- Sacrifices
 - no global memory
 - no high-speed communication ("only" Mbit/s)

COPACOBANA: Realization

multiple machines via USB

•

COPACOBANA: Basic Design

- Modular design:
 - 1. Backplane
 - 2. FPGA modules (each with 6 low-cost FPGAs)
 - 3. Controller card with USB interface

- Easily extendable:
 - Up to 20 FPGA modules with 6 FPGAs each
 - Connect multiple COPACOBANAs via USB

COPACOBANA: FPGA Modules

Functionality:

- 6x Spartan-3 FPGAs (xc3s1000) per module
 - BGA packaging (FT256)
 - Internal clock rate up to 300 MHz
- Addressing:
 - HW decoded adress of FPGA modules (GAL on backplane)
 - HW decoded adress of single FPGA
 - Further addresses (5-bit) for FPGA-internal processing
- 64-bit data connection to backplane (bi-directional)
- 64-bit local bus (per module)
- Host cryptanalytical applications, e.g.,
 - Key search engines for DES
 - ECM engines
 - Pollard Rho engines

COPACOBANA: FPGA Modules (Schematic)

COPACOBANA - CHES 2007

COPACOBANA: Alpha Prototype

COPACOBANA: Controller Module

Functionality:

- Programming of FPGAs:
 - Individual (download per FPGA)
 - Concurrent (download to all/ subset FPGAs)
- Communication with FPGAs:
 - Initialization of FPGA logic
 - Polling of FPGAs
- Communication with host-PC:
 - Redirecting results
 - Simple pre- and post processing

COPACOBANA: Applications

- Security vs. Cost
- COPACOBANA Design
- Application 1: Brute Force Attack on DES
- Application 2: ECC Attack
- Conclusion and Outlook

Cryptanalytical Applications: Attacks on DES

Data Encryption Standard (DES):

- Block cipher with 56-bit key
- Expired standard, but still used (legacy products, ePass, Norton Diskreet, ...)

Exhaustive key search (conventional technology):

- Check 2⁵⁵ keys on average
- PC (e.g., Pentium4@3GHz) \approx 2 mio. keys/sec
- Average key search with one PC $\approx 2^{34}$ sec = 545 years!

Can do much better with special-purpose hardware!

Attacks on DES

FPGA-based attacks on the Data Encryption Standard (DES):

- Clk XX Clk_24 DATA ADDR RST Clk manager Controller Clk enPT enCount enKev Plaintext Key Counter 15-bits 39-bit 64 54 \$ 54 PT Key PToKe DES-2 DES-1 enCT CT CT Ciphertext 64 cmp cmp Key PT PT DES-3 DES-4 CT CT cmp cmp OR xc3s1000
 - Exhaustive key search (FPGA based):
 - 4 completely pipelined DES engines per FPGA (courtesy of the crypto group of UCL)
 - one key per clock cycle per DES engine
 - One FPGA@100MHz: 400 mio. keys/ sec

Attacks on DES

- COPACOBANA: average key search of 8.7 days @ 100 MHz
- Somewhat higher clock rates possible
- FPGA vs. PC (average key search in 8.7 days)

-22,865 Pentium 4 ($\in 3.6$ million incl. overhead)

or

– COPACOBANA (total cost € 9000 incl. overhead)

- Alpha version of COPACABANA runs stable
- Life attack at http://www.copacobana.org/live

A Historical Perspective: The Power of Moore's Law

DeepCrack, 1998 \$250,000

COPACOBANA, 2006 \$10,000

Moore' Law: 50% cost reduction / 1.5 years

2006-1998 = 8 years ≈ **5** x 1.5 years

Prediction: \$250,000 / 2⁵ ≈ \$8,000 (close to actual \$10,000)

- Security vs. Cost
- COPACOBANA Design
- Application 1: Brute Force Attack on DES
- Application 2: ECC Attack
- Conclusion and Outlook

ECDL Problem

- Many real-world applications rely on hardness of ECDLP
 - ECDSA,
 - ECDH,
 - . . .
- Let P be a generator. Determine ⁻¹⁰ -⁸ *discrete logarithm l* of a point *Q* such that

$$Q = \ell P$$

Generic ECDLP Attacks

If parameters are chosen with care, only generic attacks are possible

- **1.** Naïve Search: Sequentially test P, 2P, 3P, 4P,...
 - Brute force attack is infeasible if $\#E \ge 2^{80}$
- 2. Shank's Baby-Step-Giant-Step Method
 - Complexity in time AND memory of about $\sqrt{\#E}$
- **3.** Pollard's Rho method (ρ)
 - Most efficient algorithm for general ECDLP
 - Complexity of $\sqrt{\#E}$

Note: All attacks are *exponential* in the bit length of the group order

Multi Processor Pollard Rho (MPPR)

Best known attack against general ECC

Proposed by van Oorschot/Wiener in 1999

Processors have individual search paths for "Distinguished Points" (DP)

DP are stored at central server

Duplicate DP = ECDLP solution

Ideal parallelizatin: speed up linear in number of employed processors

Colliding DP trails of multiple processors w_i

Hardware Implementation (Top Layer)

Neither

- fastest, nor
- smallest

implementations is needed, but

- Time-Area Optimum.
- Each FPGA: multiple point engines (PRCore) each computing a separate trail.
- All cores store distinguished points in a shared point buffer.
- Buffer locking & host communication are needed to transfer DPs to the server.
- FPGA to Host communication via serial (for debugging) or proprietary bus interface.

ECDLP Attack Comparison: SW vs. HW for \$10.000

COPACOBANA - CHES 2007

ECDLP Attacks for US\$ 1 million

Bit size k	SW Reference Pentium M@1.7	COPACOBANA	est. ASIC
80	40.6 h	2.58 h	-
96	8.04 d	14.8 h	-
112 (SEC-1)*	6.48 y	262 d	1.29 d
128	1.94 x10 ³ y	213 у	1.03 y
160	1.51 x 10 ⁸ y	2.58 x 10 ⁷ y	1.24 x 10⁵ y

* SECG (STANDARDS FOR EFFICIENT CRYPTOGRAPHY)

COPACOBANA - CHES 2007

Conclusion

Pros and cons of COPACOBANA:

- + efficient hardware architecture
- + reprogrammable hardware (FPGAs)
- + very cheap to produce
- + extendable (per architecture, multiple architectures, ...)
- + design option: local memory
- + design option: upgrade to future FPGA technologies
- + not restriced to code-breaking
- no global memory (only controller/ host-PC)
- relatively slow communication
- suited only for particular problems (e.g., cryptanalysis)
- requires programming in VHDL

Conclusion – COPACOBANA

hg Horst-Görtz Institut für IT Sicherheit

- Results
 - DES in 8.6 days
 - ECCp163 attack currently \approx \$ 1 trillion (\$10¹²)
 - Moore's Law: ECC 160 will stay secure for ≈ 20 years
 - ECC112 (SEC-1 standard): insecure!
 - possibly real-time attack against ePass
- Many marginally weak ciphers are breakable
- "Strong" ciphers (AES, RSA-1024, ECC-163, …) not breakable, but robust estimates by extrapolation of COPACOBANA results
- Several future applications are currently investigated
- Pictures, papers, and much more at www.copacobana.org
- We are looking for partners for other applications

Outlook

Future work includes

- Completion of the COPACOBANA platform:
 - harden communication framework
 - run complete DES key search with 120 FPGAs
 - run (previous) ECC challenges on COPACOBANA, analyze SECG 80, 112, 128
 - implement parallel ECM for COPACOBANA
- Optimization of VHDL implementations
- Optimization of hardware platform (beyond prototype)
- Hardware based attacks demand for re-evaluation of security of, e.g., ECC
- Further applications: Smith-Waterman algorithm for scanning DNA sequences against databases

